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NOMLIEAR PARTIAL DIFFRErnAL EQUATIONS
WIT APPLIATIONS TO InDENIWICATION AND CONTROL wasJ

H. T. DANKSt AyID IL KUNSCH$

AlesfoL. Appi ation ets fromh maemiprowptheoryareuad bodeiopageoalfamework I
for coepa of approximation schemes in parneter estimtion and optima contol Problems ;or
nonfinear partial dllhroentquation. Theft Wona wre used to amtablis tber*a cwsrmnreslt
for parameter Ideatlicadoi win model (eigomuuction) approximation techiqes Results frem numerical
inveshigation of thea. schemes for both hyperbolic and parabolic system wre gwen.

1. 1eN4lem When modeling real-world phenomena one often encounters a
situation where a pri knowledge leads one to conjecture a certain type of model
equation containig parameters which are unknown. In this paper we are primarily
concerned with techniques for recovery of these unknown quantities from given data.
In if 2 and 3 we present a quite general framework for approximation schemes for
abstract nonlinear CAuchy problems. 7Tese approximation results are subsequently
applied to modal techniques for identifcation and control problems in If 4 and 5,
respectively. A summary of some of our numerical experience with parametet estima-
tion problemns using these techniques is given in 1 6. The examples here were chosen
so as to ilustrate the feasibility andl effectiveness of the method and to investigateI possibe inhereut dimiculties. We are quite confident that the idea outlined here will
be applicable in a variety of research areas where mathematical models for the
phenomena under study are used. In a forthcoming monograph we shall discuss in
more detail identification problem that arise in several areas of applications [35]
including seismology (3], [10], 18], reservoir engineering [1111 [171, [381, glaciology
[16], physics [371 biology [4], [5], (29], (34] and large space structures technology.
While our treatment here is restricted to consant unknown parameters, the theoretical
Wdas exten in lag part to problem with unknown function parameters. Ineed,
we are currently applying some of our techniques to specific problems from the area
mentioned above; in some cases these efforts involve identification of functions.

In this paper the general approximation results are used to carefully discus modal
approfaion schemas for certain classes of partial diferential equations (see i114
and S). Such schemes for specific identification and control problem are, of course,
no now. Many disacaloas in the literature, however, are in the context of very specific
examples ad frequently no convergence proofs or evidence of numerical studies are
supplied. Modal aprxmdwhave many advantges inicluding: they are readily
disewesed and understopod in terms of classical spectral result; they are familiar to
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816 H. T. BANKS AND K. KUNISCH

and readily implemented by practicing engineers, and they give rise to a simple
algebraic structure for the approximating ordinary differential equations. However,
modal appoximations do have some shortcomings, of which we mention several.
First, in many practical problems it is very difficult to calculate the true natural modes.
Secondly, for certain parabolic partial differential equations modal approximations
by their very nature lead to stiff systems of approximating ordinary differential
equations. Finally, one can encounter lack of "numerical identifiability" (i.e., the
identification problems for the approximating ordinary differential equations yield
parameter estimates that converse to different values for different sets of initial
estimates) regardless of the well-posedness of the parameter estimation problem for
the original partial differential equation model. With respect to the first difficulty
pointed out here, we refer to Example 4.4, below, where we explain a "modal"
approximation scheme for an identification problem which does not employ the natural
modes of the system. For one solution of the latter problems, our experience indicates
that for certain classes of parabolic problems spline-based approximation schemes
can be more efficient. Details on this aspect of spline methods, along with a number
of other features of these techniques, will be given in a separate manuscript currently
in preparation.

The parameter identification and estimation problem has received a great amount
of attention in the engineering literature and we refer to [1], [23), [31], [32] for review
articles. In the future monograph alluded to above, we shall survey the research efforts
from the engineering as well as from the mathematical literature. Much of the
mathematical literature is concerned with the problem of identifiability, which, loosely
speaking, is defined as the problem of injectivity of the map from the set of parameters
to the set of outputs. Although this is a very important theoretical and practical
question, it will not be a part of the discussion of the present paper. I

We point out one important technical aspect that will become clearer in Examples
4.1 and 4.4 below. In general, the elgenfunctions of the model equation win depend
on the parameters that are to be identified. For modal approximation schemes this is
an extremely undesirable feature from the point of view of implementation, since in
Practical examples the representation of the operators in the approximating equations
will involve a matrix of inner products of the eigenfunctions. it is, of cotre, desirable
to have this matrix idpendent of the unknown parameters to avoid excessive
numerical interations when performing iterative searches on these parameters.

Our focus in this paper is on the development of semidiscrete approximation
schemes for parameter Identification and control problem which result in approxlmat-
ing problem governed by ordinary diffemntial equation. Of course, NU discretmation
methods (diretlmdton in time as wel as spatial coordinates, resulting in problem
govened by diMstace equatios) ae of great importance and our investigtions of
a related theoretie framework, as well as detailed scbemes for such an approach,
wN be raprd elsewhore.

In asmmymy, the emphm of our presaton b twofold. Fht, we present a
-wl tmda bamawork, with unknown -- Npa, which

can be wsed to Ueat nmay types of problem (dudin etimation of naction spm
pametes) amd app timaoi sdhma (us tho ronmw in 17 below). As a concmte
UNIVls of dw Ws o thi ft-amo. WO $in a deededm auaon .1 "msodal"
ry&ap matlo schoaes, thieb ilui on a SOMd te-icl undat a dau of
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APPROXIMATION OF NONLINEAR PDES 817

denote norms of elements, as well as those of operators. Only in cases where confusion
may arise will we use subscripts to distinguish norms in various spaces.

2, The abuiste iiesdmcatlee pesm ad Ust appezdmain. We conside the
abistact semilinear Cauchy problem

(2.1) (t)-=A (q)n (t) +F(q, , u (), t>0,
U (0) = u0(q),

whomefor each q e aR k, A(q) isthe inintesimal enmtor ofa inear Co semigroup
{T(t; q)),o on a real Hilbert space X(q) with inner product ( and norm[I
(denotd sometimes below by X, (* )and 1..respectively, when no lots of clarity
results from suppression of the q). We shall throughout our discussions, employ the
concept of mild seludos ,so that t -uon0; q) iscalleda subdon of (2A1)ifit satsfies

(2.2) ut; q) -T(t; q)uo(q)+ T(t -as; q)F(q, s, u (s; q)) Ar

We note that for solutions u we have t u~ 0; q) continuous. The conditions that we
impose on F below will guarntee existence and uniqueness of M solutions u of
(2.1) on any given finte interval [0, T]. We sha lk certain speifi instances below,
be required to dicuss briefly the relationship between mild and Wtrong (in a classical
almost-everywhere sense) solution of (2.1), but for more general results we refer the
reader to [28].SThrugout our presentation we shall assume that X(q) is a function space of
R-valued "functions" (possibly one of the usual Lebesgue spaces of equivalence
daise of functions) defined on the bted interval [0, 1)-, consequently, we shall also
use the notation u(t, x;q) or u(t, -;q) when discussingsoludions of (2.1).

While we shall also discuss control-theoretic applications much of our attention
will be directed towards the problem of identifying the parameter q in (2.1) from
observatons of the system. Specifically, we assume that (2.1) models some physical,
biological, economic, etc., sysemn for which output measurements # are available.
These measurements may be available in the form of continuous data f(t), 0ataT
of discrete data (40 Ah< .<, faT. Ween seek to d a "bt" value for q
in 0 by minimnizing -n appropriately defined fit-to-data criterion. To be specifc in
our formulaton here, we shall ssum discrete time observations with values 9(t) in
an observation space . All of the results of this paper are easily extended to the casejof ideantibatlon problems where one his coatinuous time data but we shall not pursue
stuh problems here. Assuminig, then, that a crterion function I: Q x C(0, T; X(q)) x
Mr., 9 -*R' is deoond, we formally state the Identification problem:

(ID) Gienobservatinsf-(fi)I".I, minimize (qu(.;q),9) ovwerQuasubjec
tou(-; q)sWAd~it(2.2),

Several traditional choices of fit-to-data criteria awe knlded in our formulation;
naey, we my c ie eiter Integral or pelatwise (in a spatial s ense) evaluaton
leaint-squmm ss in the above formnulation. In tho case od interal, evaleation we are
given mueasurementas )Lt01R' where &pSn and an *output map
Y(4zxq):R-*R' on the "state,' u(4x;q). Tie Observation space Is given by 9-

*LA(O ;R') nd the atrlaon is debsdby
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We assume that Y is continuous in q and sudficiently regular in x so that x -0
Y(tbx~q)u(tbx;q) is inL 2(0, 1;Ro). For the choice of pointwise orspatialy discrete
measurements, we assume that we have observations P(tj) e Win I'-. IR v, correspond-
ing to measurements of the output at points jxj11-, I n [0, 1] at time t.Tbes observations
represent measurements for C(tl~q)(Qjq) where &(tq)-col(u(tjxj;q),. -,
u(ti, x1; q)) and C(t, q) is an (z'I) x (n/)-matrlx depending continuously on q for each
fixed ti. The associated fit-to-data, criterion is then defined by

(2.4) Jqu.q,)

The output maps Y and C introduced in (2.3) and (2.4) are necessitated by the
fact that often in practice one can observe only some components (say Y) of the
x- dimesional vectors u (t4 x; q), and that these observations may depend on the tim~e
at which they are made. We further note that the point evaluations at x, used in
defining &I4, q) above may be meaningless without additional restrictions on the state
space, the initial data and/or the right side of the equation in (2.1). A more detailed
discuission of the problems arising from use of criteria such a (2.4) when dealing with
mild solutions will be given in the context of 2mle4.3 below.

We turn next to formulat a se"ece (I of approximating problems on
Hubet spaces Xm(q) for our original identification problem (ID). These problems
involve "states" governed by ordinary differential equations and are (in the specific
instances we shall propose) tractable using standard numerical procedures. We state
first a min of hypotheses and definition that will be needed at various points in the
sequelI(Hi) For out N , 2, -.. , Xm(q) is aclosed linear subopece ofX(q), endowed

with the X(q) topology. 1(M2) The space X(q), q eQ c: R , are set-theoretically equal and uniformly
topologIcafy isomorphic: so that there exists a constant X it 1 such ibat Iv 14
Xlvi1. forall v aX -X(q) and q, 4 eQ.1

(H13) For each q a,A(q) generates a lnerCosemigroup r; q) onX(q).
(04) The set 0 is a compac subset of Rh.
(115) (1) For each q eQa, let PNI(q):X(q) lX(q) denote the canonical orthnl

projectMioaong XN(q)± and letA A(1): X(q) -*X"(q) be defined byA (q) -
P(q)A(q)P"N(q). For each N, let A (q) generate a linar Co-semlgroup on

X(q) denoted by TNQt; q).
(ii) For each N, thee exist constants A - AmN anda .- 4(Nr), independent
of q, Such that TN(; qA SA 4

(HO6 0i) For each continuous function u: [0,r] -#X - X(q) (see (H2)), the map
t -*F(q, t, uQt)) is, measurable.
WII For each constant M >0, there exists a function k - kW() in L2(0,T)
such that for any q, 4 aeQ we have

JPfq, t, ul-F(q , 4 SkQ )ul-vs, I
for Al U1, V2eX wiM INIISM
(iii) Teexmuua fancin k2 In LA(, T) sucb that

(IV) Far ON& (1, w)*[O. TJxX, doe M 4 .*Fq,, 4 ) is continuous. (Aga,
under a)m 1" 60anIdthwig X X we 0suna.)
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(H7) The pot PN(q):X(q )'.XN(q) are Such that for any sequence qNu in
Q sieingqN -4 e O, on has sa(,is)z yng - -a0s N-*ao for all z eX(4).

(H8) For each convrgent sequence qN _.41 in Q, there ar constants A,a such
that JTN(t;qO),, i.Ae', IT(t; ,j)I iAe " uniformly inN - 1, 2;...

(H9) For eachconvergent sequence q -4 inOohasforz X(4), NTN(t; qN)z -

T(t. 4)z JN -P 0 as N-# o, uniformly in te[0, 21.

The assumption (H2) will be taken as a standing hypothesis for the remainder of
our discussions. For the approximating schemes we develop below, consistency win
follow from (H7) while (H8) is a statement of stability. As we shall see, convergence
of the schemes (which is (H9)) will follow from (H7), (HS) and the Trotter-Kato
theorem.

Remark 2.1. It suffices, under the standing assumption (M2), that the following
condition hold in place of (H6)(ii): For some fixed q*e Q we have that for each
M>O there is a function k, such that for all qeO the relation jF(q,t,u)-
F(q, u2)f;5.1ki()iuA-u2L, for all ut, u2 eX with lujI.SM. Indeed, it is easily seen
that this condition, along with (H2), implies (H6)(ii). Similarly, we can in the presence
of (112) equivalently postulate in place of (H6)(iii) the conditions: For some fixed
q*e O there exists a function k2 such that JF(q, s, v)lq.;k 2(t){vlq.+ 11 for all v eX,
q e Q. We further note that existence of a function k3 e LA0, T) such that WF(q, t, 0) 1 6
k3(1) for q,460, a statement of the inequality of (H6)(iii) holding only for lvid
sufficently Ime (i.e., aine growth at e0), along with (H6)(ii), are sufficient to imply
(H6Nlii).

While the complete role played by the various hypotheses in our development
will be dearer after our presentation, a few explanatory comments here might be
helpful to reader. Fu, the desirabilit of the generality of alown the underlyingl
Hbertpace X for (2.1) to dpend on q in such a way that (H2) obtains will not be
appaet fro the examples dissed here. (Rather, one must for this consider certain
parabolic problems-ee the comments in 17.) However, in light of (H2) as a standing
asumption, we are jusaed in suppressing the canonical isoiorphism JM :X(#)-.
X qN ) j Wrn.e( -- 1 - z Lm -w 0 in (H) rather than the technically correct state-
gmn PP74( -Jwi L -P 0. Similar observations are pertinent for the statement
of (H9) as wel as in numerous other places in our presentation where we suppress
t jN n .

Condition (H4), while seemingly stringent, is an assumption often valid in practical
problem where our theory might be useful. Since under (H3) A(q) is closed, it follows
from the dosed graph theorem that AN(q) of (H5)(i) is, in fact, bounded and hence
(HS)(i) follows immediately from (H3). It should be recognized that the form of the
approximating operators defted In (H) is a classical one (e.g., see [33, p. 369D which
has dso recently been empayed in the development of spline approximation tech-
niqus for delay difrentia equatios [6]. The definition of A N (q) involves the implicit
assumption th XN(q) - Da (A(q)); since our oal here is the rigorou formulation
of med aprxm schemes for (IM), this restriction poses no difficulties.
However, it does prevent a straightforward Inclusion of low-order finite-element
methods for higher-order parta diffrential equations in our approximation

Hypothesis (17 is a como equirement (e.g., see [243 [30]) In approximation
* ydGMrAndlnttt 11mqhi ace oubipaces actually Approximate the original

otWpw X~ Finefy, (116 Is of~rhda coudtot on the nonllneart in (2. 1)
that ate suuisean s~ .t dM hadumnyItrast probem of practical imqpor-
t.ace but yet am stroa eno@h to prante globdl ebstee of solutons of (2.1) on

. .. . . . . . . ..... .- -



820 H4. T. flANK AND K. KUNISCH

fixed finite intervals. As the knowledgeable reader might expect, these conditions can
be replaced by alternate and/or weaker, hypotheses, but only, in general, at the cost
of additonal tedium in the proofs below. We have trid to comprmise between
strong conditions tha are easily stated and employed in the proofs and ones that are
as genaral (and weak) as possible. Further comments on this matter will be made in 03.

Before defining the approximating equation for (2.1), we define the projection
of &he nonlinearity F onto XN by Ft(q, t,v) -PK(q)F(q, t, v) for each (q, t,v0 e
Q x [0, T] x X. Ile approximating family of equations is then given by

(2.5) v0'"qu~)

Assuming existence of (mild) solutions to (2.5) (this will be established below), we
denote (for a given q) these solutions by u N Q) or alternatively u N ; q) or u N(Q, x; ;)
depending on the context. We then define the approximate identification Problems
(MN) by:

(JflN) Given observations 9-{()~.iand a fit-to-data criterion .1, minimize
JN~~q~mJ(qu";q), ;) over q eQ subject to ut( ;q) satisfying (2.5).

We note that if (in addition to (HI))XN(q) is finite-dimiensional, then (2.5) can be
equivalently interpreted in the strong sense and (ID") then becomes an optimization
problem constrained by finite-dimensional ordinary differential equations.

In our discussions below, we shall denote by 4N any solution of (IDw) so that it

PatoaosmoN 2. 1. Asswnte that (1H2), (11) and (116) obtain. Then for each q eQ0

there exists a unique (mild) solution u(-; q) eC(0, T;X(q)) of (2.1). If, in addition,
(145) holds, theme exists, for each N - 1,2, - , a unique (mild) solution U"(.;q.)e
C(O, T; X(q)) of (2.5).

Proof. The proofs are completely standard and we only sketch the idea for (2.1).
Uniqueness follows immediately from (HO6 and an application of Gronwali's

*1 inequality. Existence is established through the usual Picard iterate techniques. Doefn
v(t) -T(t; q)uo(q) ad for -1, 2, ,

(2.6) *()-T(t; q)iw~q) + IT(t -s; q)P(q. s, v'-1(s)) ds

for te[OTn Prom (11) and (146) it is easily ween that the Iterates vI are all well
defted and V: [0, T]-'X(q) is Oontinuous Moreover, {v1ito is a bounded subset Of
C(o. r; x). sopwyftn (H6XI) mad simple inductive arguments, ow can establish
tha {u') b Cmbcy ie C(O, T; X). Passing to t limt in (2.6), on obtain t desired
remib. Ealatmas of unique Wltom of (2.5) is arged in an analogous mannier by
%apelg to(HOM for sppropulat boudednas.

TWmOMM~ 2.1. Assume. hyptwhew (II1)-(H6) hold and let Jr(-,., 0hX
C(O, T;X)4R1t be coduous. Mwwwue, suppoe q -#uo(q), q -.P(q)z and q -*
TN(i; 4)z, OIX, ra e~unea late18.u~omy to[, n] Then: (i) Ther
exWt for "Ac N. a hdss 4". (IDW) muldo ws. s eumo 1 peesue a cotewgent

uuubeim~ee4" (4. (ID we assu WMee" A fuWf My aequee (4')l Qk0wh
we hm Nw . (')-On~t q a .40 unlbrty i tatO.. thJAn 4 it a

ISeMIN Of (ID).
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FP'oe. We show for fixed N t~itq4 * 1 N (q)_j(q, UN(; *q), p) iscninoso Q
which, in the light of (H4), yields (i). First note that U N satisfies

(2.7) U N (; q)_ TN (t; q )p (q)UO(q) + TN (t_.S; q)pN (q)F(q S ~N (S;q)) ds

on (0.TI Inview of CH5) and (H2)we find that there eist constants Mand Msuch
that leN0; q) ~ SM.le(qfl;SMI uniformly for te [0, T'] q, 4eQ. It follows from
(H6)(iii) and (2.7) that

IUN(t; q)4;5AMjP"(q)uo(q)l4 + MJ0 ~? qFq ,U q))I. ds

SMju(q)I +MJO k2(S){uN(S; q)I, + 11 ds.

Since q - iu(q) is continuous, this implies (via Gronwall's inequality) that Iu N(t; q)j,,
is uniformly bounded for Qt, q) e [0, TI x 0. This in turn implies (by (H6)(iii)) that the
mappng 1 TN (t -s; q)P' (4)F(q, s,UN(S; #)) from [0, TI to X is dominated by a
integrable functon uniformly in q, 4,4 eQ(. (Tis will permit us to invoke, blw
the M"ua dominated conveDrgenc theorem.) Assuming that q' - 4, q', 4 eQ r
arbitrary, we obtain the following estimates:

IuM(t; 4)-UM (t; q')I
;S le"y; 4)p" (4)uo(4) -T(t; q')pN (4)U(4)I

+ITN(:; ql)pM (4)UO(4) - T"(t; qI)pN(qI)uo(q)j k
+Tt;qI)PN(qI)ue(4) - TN(I; qI)P"(qI)uo(qI)j

+J t-s; q')(PN(4)-PMNq'))F(4, UN(S; 4))I di ).e

.'PIY)+ P2( j)+P3( I) +P(i) +PS(I) +P6(i),
whenethepi'sawe defined a indcated (p, the ith term), i- 1, - -, 6, and aln n '

am I -1+We then have by hypothesis

PAD(I - jTN (t; 4)- T(t; q')IPt '&7)uo(4)1..0 UI-"D,

unioMly- in se( co Also V2 and P3 -0 0 by the Continuity uaumpdons on e and

ug and the boundednom of eTN; q'). Dominated convergence implies that p4-. 0
and ps4 0 sal cc. Fially,

P(I)M~if1P 1 U IN($; #))-_F(q', S., u(S; 4)) di

~ .... w~n ,,NpU; 4)Ukj(q) di, IS j)
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where p7(j)-Oasjo-o and k1 depends on the uniform bounds for u"Q;4), uN(;q)
(see (H6)(ii)). Thus we find

u l;4) -u 0; q')Ige lt) + k ISA4uN(s; 4f)-_u'(s; qI)j dS.

where s(t)-.0, uniformly in te[0, Tas j.oo. Applying Oronwalls inequality, we
haIve uniform Cmnt) continuity of q -* it (t; q) on Q which implies the desired continuity

Turning to (ii) and ltting {4 N} be a convergent subsequence with 4N,-4, we
firt obser tat j,(4N )=;S (q) for allq c 0. By hypoth,-is uN(t; 4 N

) - u(t; 4) and
furthermore u, (t; q)- u(t; q) for each q e Q, with convergence in both cases uniform
in t on [0, T]. This implies JNI(N)-(, u(. ;i), f) andJN'(q)-J(q,u(.;q),f) as
j- D and hence from the above inequality we obtain, by passing to the limit,
I(4 u(. ;4), )=I w(.; q), )-foralq Q.'i4 is a solution of (D) and Theorem
21 is ;

Raw* 2.2. f -*I(q, v, #) I a mapping on C(O, T; X) actually depends only
on a femtenue e of vies v(t,), 4e[oT], as, for example, in (2.3) or (2.4), then
the hypotheses of Thbo 2.1 imolving uniformity in t can be relaxed to statements

ObSO hodn only for each fixed t e [0, TI. The above arguments remain unchanged except
b"• I .t II' t the uniform (in t) convergence remarks are replaced with pointwise convergence

ns(see especially the term pi(i) in the proof).
-Tw sw as We concude this section with a brief explanation of how (2.5) (or (2.7)) is to be

actual comnputa-ios. We adopt notation very similar to that found in [61 in
. lopment of spine medo for delay system. We assume that XN is finite-

an-hos a bed independent. of q'" ta (H12) is astadin

~~5W )by #(i*

' (w1 PdtMc'where 4(N) dim XN'(q). From (2.7) under (H5) we see that the solution n'~ of (2.5)
~'. sa INfe i q) eXN for All and, hence theree calm a representation UNt; q) =

J# wit WN;q)_oI(WN ;q),... ,W w7 t;q))GR'dO. We let [AN(q)]
an , (swN)deot *ae matrix and coordinate repreentlom relative tod0N of

A(q ad P~w(qF(,, , ) respectively. The coordinate represntation of (2.5) is
then given by

*(t; q) -"[AN(q)]w(t; q) + [F(q, t, WN(t; q))J t >0,

., ~~~WO _1 -s) , -( " "

sis i @M

....ii.. Goodleaft wefota a R in e(q)z- a is=determind - -uely

oh1a 1 *110 ^" d ) IImOft*W M tsIz ,N
:,few ~ ~ fo I th (M)x4(N)kS moo dsm in (Gf )r. V'A$6Mlw m dfn

.4 
- .~Z

iitf ,j. k ______p____________I"___________ sa

___7
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We thus arrive at the final form of the approximating system for (2.1) in X N (q) as

= tNt)fiKNwN(t)+RNF(q, t, pW~)) 0

(2.12) wN(o) = (QN ),RNuo(q).

3. A4oui eo heen eoem t f abMted systems. In this section we shall focus
our attention on the condition "q'-4 implies u1(t; q')".u(t; 4)" of Theorem 2.1(ii)
and present results on the convergence of solutions of the approximating systems (2.7)
to solutions of (2.1). We state and prove two theorems; the first is applicable to
nonlinear parameter identificationproblem ( 4) while the second will be used in
connection with linear boundary control problems in I S.

THEowd 3.1. Suppose hyjotheses (H1)-(H3) and (HS)-(H9) hold and et qm , 4
be arbitwary in 0 such that q -'4. Further, suppose that juo(qN)-_uo(4)Lq)N0 as

N"+ ao. Then the mild solutions uN(t; qN) of

£N(t) -Am(qN)uN(t)+FN(qN , t, UN(t)),
(3.1) UN(o)=PN(qN)Uo(qN)

converge to the mild solution u(t;4) of (2.1) for each 0[0, T]. If (t,v)-*F(4,t,v)
is continuous on [0, T] x X, then the convergence JuN(t;qN)-U(t;4)1,)E -0 is uniform
int on [0, T].

Proof. Let qN"4 be arbitrary as Lypothesined. Recalling the proof of
Theorem 2.1, we observe that one easily argues existence of a constant K such that
lUN(t;qN). AK, Ju(t; 4 )tjK for all N and te[0, T]. Further, we see that for
t E [0, TI we have (where all norms are t. qN)

JUN (t; q N)-- U(t; 4)1

S TN (t; qN)pP (q N) UO(qN) - TN (t; qN)pNf (qN)Uo( 4 )1
+ ITN (t; qN)pN(qN)UO(4) - TN(t; qN)uo(4)I

+ IT'(t; qN)uo(4)-Tit; I)uo(q)l

+ 17(t _ s;qN)p(qN){F(qN, uN(s; qN))_F(qN, s, u(s; 4))}I ds

+ ITN(t-s;qN)pN(qN)IF(qs,u(s,4)) -F(4, s,u(s;D)Ids

+ T"N ( _ ; q N pN (q N) _ )}F(q, S, U (S; 4))I dS

+1 t 17(tS;qJ)P(qflgp(, S~uN(S;qM))_,F(qN S~u(S;E))lda

5~ 01), o bppdum m lbs u1i1 of pN~(qN) i (M1)~w idI 1 NI
ow N-- of A k we4) ind(j-.)+by' .: :..:, .a . I .t, ) , #)! -e i -*. 0. A b f# dWO St e.a . ( q( ) [t 4)I,.. by
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(H8) and (H). That J83(N)J-* 0 uniformly in t on [0, TI follows directly from (H9).
Moreover,

T

1e4(N)I ~! e ' I0T (qN' s, u(s; 4))-F(4, s, u(s; 4))J ds - 0

by (H6)(iv), (H6)(iii) and dominated convergence, while
T

Iss(N)I E e"T Jo I{pN(qN) -I)F(q, s, u(s; 4))J ds -0

by (H7), (H6)(iii) and dominated convergence. Finally,
t

le(N)l = I{TN(t-S; qN)_ T(t-s; q)IF(4, s, u(s; 4))J ds - 0

by (H9) and dominated convergence ((H8) with (H6)(iii)) for each fixed t e [0, T].
We note that the convergence in all of the terms above, except e6, is uniform in

t on [0, T]. If, in addition, the continuity hypothesis of the theorem obtains, we find
that (F(4, s, u(s; 4))js e [0, TD) is a compact subset of X and the convergence in the
integrand of e6 is uniform in t and s; hence in this case e6 -0 uniformly in t also.

We have thus established the following estimate:
u N(t; qN')-_U(t; 4)1

6I Eut+A e JIF(q s,UN(;qN))-F(q s, u(s;4))ds

g-eN(t)+Ae- 'r (S)JUN(S; qN)--u(S; #)l as
0

where eN -*0 as N-.Po. An application of Gronwalrs inequality then yields that
JuN (t; q N)_U(t; 4)"0 as N-* oo, where the convergence is uniform in t under the
added continuity hypothesis of the theorem.

COROLLARY 3.1. Underthe hypotheses of Theorem 3.1, uN(t; q) - u (t; q) for each
fixed q e O, uniformly in t on [0, T) if, in addition, (t, v) - F(q, t, v) is continuous on
[0, T)xX.

We turn next to convergence results needed for optimal control problems.
Consider for fixed q e Q the system

(3.2 u(t) -A(q)u(t) + (q, t),~~~~(3.2) uO o
U (0) - U0,

and the approximating system

d N(t) AN (q)u N(t) +pN (q)G (q, t),
(3.3)

uN (O) -p (q)uo,

where 0 has the form 0( , t) -y(q)w(t). We assume y(q) e r where r is a subset of
{f-(?(,' .Af)t :Q .0cX) with )t a given subset of X. We further assume
a- aZ, Z a en u ofLAO, T; A

Ti-oamz 3.2. Aasume (H1)-(H3), (HS), (HT)-(H9). Supos mowwr tha ,t
. esspct 04 Z k b"Wc. Te for gech lXpd q g O, Mild Utn uNof (3 3)
.mea Pop Ow m ohS f.2),ylnb ir , Ye rwt [o,T .
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Proof. We consider the estimates in the proof of Theorem 3.1 with F(q, s, v) =

G(q, S) and qN =4=q fixed. Then

u N (t; 0 -110(; qAZ 8 2(N) +ff3(N) + s(N) + #(N)

(s 1 94  0), where 82 and 63 are as before and

=IfITN(t s;q)pN (q) _1)0(q, S)l dl$,

,6-,s q) -T(t -s; q)IG(q, 0 s.

and, as usual, all X norms are " . We have immediately (using (H7), (H), (H9))
that 82 and 63- 0 as N -+co, uniformly in a-, y and tel[0, T]. Also,

T

a
e"T Max j(pN(q)-/)'Y,(q)[ [T0 {S)l dS.

But since , is c6mpact and Y is bounded, this latter term -.,0 as N - 0 uniformly in
e r, r-e I and t e[0, T]. Finally,

le6(N)IS m 'IT N(t - s; q)- T(t - s; qft,(q)l o(sf ds
1/2

: l . J1 I{T"(1-s;q)-T(t-s;q)),,(q)2 ds} .

and this last estimate yields e6(N)- 0 uniformly in y e 1, oe I and t E (0, T], again
from the compactness of ,t, (H9), and the boundedness of .

As we have previously noted, the main purpose of (H6) is to allow us to
guarantee existence of solutions of (2.1) and (2.5) on fixed finite intervals [0, T]

(see Proposition 2.1). The condition (H6)(iii) is used in the proofs of Theorem 2.1
and 3.1 only to establish uniform bounds on the uN This permits us to employ the
local Upehits condition (H6fil) and to appeal to the dominated convergence theorem
in certain arguments. We have already noted that (H6)(iii) can be relaxed to "affine
growth at o0" (see Remark 2.1). With an alternative approach, one can relax this
growth condition even further and still obtain the conclusions of Theorems 2.1 and
3.1 (with the other hypotheses remaining unchanged). Specifically, for N sufficiently
large, the Initial data and defining operators TN, P and T for UN and u, respectively,
are close. Thus if one assume (in place of (H6)iii))

(A6) (I) For each q eQ, there exists a solution u(t;q) of (2.1) on [0, T], and
(Ii) There exists k3 eLA(0, T) such that IF(q, , 0)1,4 ak 3 (1), for q, 4 eQ and
te[0, TI,

it is rather tedious but not difficult to show that fof N sufficiently lar, all UN defined
i by (2.7) exist on CO, T"] and lie in some bounded neighborhood of u, the solution of

(2.1). (The arguments involve use of classical fixed point Ideas to obtain solutions
on some interval [0,81] and then continuation to [(8,28 ... ,etc.) The
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condition (A6)(ii) can then be combined with (H6)(ii) to obtain domination of
terms such as F(q, s~uN(s; q)) Thus all of the arguments behind Theorems 2.1
and 3.1 remain valid, the hypotheses being changed only in that (A6)(i), (A000ii
replace (H16)(iii), and the conclusions changed only in that they can be obtained only
for N sufficiently large (which of course is not important theoretically in approximation
results such a those discussed in this paper).

Regarding the assumption (A6)(i), we note that there are various conditions one
might impose on F to insure existence. For example, monotonicity hypotheses might
be assumed so that -(A +F) is maximal monotone and one could then appeal to
standard existence results [9], [19]. In §06 we present numerical results for our
approximation scheme for an example (Example 6.5) in which (H16)(iii) is not satisfied,
yet (A6)(i) and (A6)(ii) do hold. However, we shall not pursue any of the theoretical
ideas here, since this is really not the focus of our presentation.

4. ammples: Parameter lieUdgealtlo In yperbelic and parabolic equalions.
We turn now to an application of the results developed in the preceding sections to
identification problems for specific equations. A fundlamental requirement in both
Theorems 3.1 and 3.2 is that the conditions of (117), (H8) and (119) be verified. As
we have indicated earlier, the convergence statement of (119) can be obtained rather
easily for our schemes from (117), (HS) and some standard approximation results from
linear semigrop theory. We state here, for our future reference, one version (due to
Kurtz [24D of these approximation theorems.

PRPioporroN 4. 1. Let (fiI-I1) and (91",I -Is), N =1, 2, --- , be Banach spaces
and let v N gj_* 3gN be bounded linear operators. Assume further that f(t) and 5rN (t)

are linear Co-semigroups on fi and &*N Wig* infiwkeslmal generatorsit and d's

(i) llMMp,.INzIN =1:1 fO? all: eX,
(ii) therm exist constants , Z Independent of N such that ISe(r)I liAedf t irO ,

(iii) there exs a set c Asuch that 9c Dom(), , and FX;=dR -
for MWei As > 0,

(Iv) for z e 9 we have Him..* Idsvs: -wmdjk, 6 -O0
the Un jWS~ PZ-Wmr zIN-0fr z eNA, wKlfernuy in ton compWac t subse ts of

We nooe diet the requirement in (i mples that 2 s acore [21, p. 166] of i;
ti b esily aeo usizi the fadt that d, being an infinitesimal generator, is closed and
(A1dY is bounded for A sufficiently large. The proposition then follows directly
from Theorm 2.1 of [24] taken with subsequent remarks [24, p. 361] of that reference.
Obviousl, W11 in our stment above could be replaced by the hypotheis that 2
be a care of i. Further, we remark that the requirement it - 41 is superfluos in (fi)
V en verife that A - )- for Ao e p(d). In this cas one can easily demonstrate
directly that 9 is a core for the generator i.

In the examples we discuss below, we shall use the notaton A, F, A'4  P, FN
to denote the specific operators in each eample, since this will facilitate reference
baek to the basic thorems of #12 and)3 and should caus no confusion for readers.
However, we shall adop distnct noation for the various state spaces X, XN within
the context of each example.

Example 4.1. Hypwb.Ae equation. We consider the one-dimensional hyperbolic
-equationw+~v4.t.,t x , ,

(4.1) qv qv j A0 .X .V
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with initial and boundary conditions

v(O,x)= q40W

(IC 1 )vAO,z)s F. qls(x) for0rixsl,
1-11

(BC1) v(t, ) =vQ, )- 0 fort >0,

where v -0v,4x, q. eR" and the remaining q6 qj are scalars. The vector parameter
q of #2 thus has dimension k -3m +3. (Ifthe output maps such as Yor Cin the
fit-to-data functions (2.3) and (2.4) depend explicitly on some paramneters q7.... q7-
we asuewith no loss o( generality that these have been embedded in the q6 (or q4
or qS) Vector.)

We remark that we do not formulate nontrivial boundary conditions, possibly
depending on parameters, in (4.IH-ICi)-WBI); however, it is easily seen that by
simple tasomio.such generalities actually can be included in our formulation
above. Consider, for example,

(4.2) vieqlvxx

with initial and boundary condition.

v,(0, x) isx)

1(BC2) VQt,)-q 7bI(t), V 0, 1) -qgh(t),
weebb etiecontinuously differentiable function.. Employing the standard

trnsormation wQtx)=vQtx)-(1-)q7b(t)-qb2(t), we find that (4.2H-IC2)-
(DC2) can be reformulated a a special cuse of (4.IC1 H-BCi).

Returning to (4.1), we proceed in the usual manner to rewrite the equation with
boundary mind initial condition as an abstract evolution equation. Lot A denote the
L.aplacian operator 82/8X2 in HO - LAO, 1;- R); here and below the Sobolev spaces M'
consist of R1-valued functioos on (0, 1] taken with their usual inner productq unless
otherwise specifi. it is well known that a with Doms (A&) -H min H2 is a self -adjoint
opertor in R4 satisyn (-Az, z) i zJ2 for all z e Dons (A). We impose the following
additional assumption on the coefficient q, in (4. 1):

(HO) I~r xs oiienmesqL n uhta Sq1 S
Uq1 .

Fora given q eQ aR 3+3 we ofocourse mom by qthe first coordinate of the vector
q q.--, q6) where a'-(q), - ,qj),J -4, 5.6.

Having thus assumed hypothesis (HO) for a given fxed parameter restraint set
0, we endow tie set Ho with a family of inner products

wheroq raugesOver Q lVIM Of(OWL thespacs (Mf"("') ist frOacqeQ,
Hilbert space which we denote by V(qi). The spae X(q) of 12 is chasen for this
example to be X(4) - Xr(q) = V(41) XH l ite usua r oduct topolW ogy erated
by((wi, w2), (Zi, s2))#m (wi, zi),, +(w2, Qn. Cbndion (112) bsobviously satisled sohm
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for any ,q eQ0 we find 1z 6; Xjz 1, for all z eXJ where X~Yq) 1 .Introducingthe ariblew W- v wemay rewrite (4.1)-(1C1)-BC1) in Jr by

where) ~i))VWN', DomtA q)) =Hw t)), xHO,

(eoet4ig.oacrfldicsino34.))edfneteoeaosecnee

specreo al er aDo thwhor f binea formPseD.p 3 (9 .33

[33 p. 47-54) re applcale Dein0 4
1 )-(2/)si xan *()

Thfoe tuning )an t he aaeu i crspon(.)dein th olprjetos etc., seede
in) homuaing be hsfnd the modal approximation shmasopiaeator (4(1). frAq

Sinsce are ope2rato r A s reeadily seen cmt besivent y nadfalsi

whecrl theor and h eahpeory of tiea and w 1 .131 3, .33

whee te .2 -1,2, are NxNiabe deignft matrices jdefn by d D Omla(x)

ing (2.9), we observ that In ithi an jt ontite oplete P"(q)A~ NraU
(CN S)enen fo q.)- l n rsetvl.Te oe usae

Wor)-*n~ no WIn aoin toe define y te()an(Potin fo th hypeIol)
.4.~P.( P ieroudesl.

Ti P)ua 4.1. -,N Au... A. ,HQ held. end le
4 IN

It~~~~~~__ isesl e.htU;jtj~~jfrsaCN o ~ hr *-, 01.. 0.

and a complete orthognal,.but.not.normal,.et.for.........o.q ,,, . wt
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and T?(t; q") onm J(4) and letN; qN)z -T(; 4)z6,-m f*orA z a t(4), w*mluy is

Proof. For any q 6 O, a straightforward calculation shows that

with D=. (Ao(q)) -HO' nl" X Ho is a uwnnametric operator in *(q). Furthermore,
Dom (A(q)) is dense and A, is invertible. It follows [28, p. 97] that Ao iskeww adjoint
and henice by Soon's theorem [26, p. 2S2], [41, p. 345] generates a unitary grot on
X'q). Defining the operator A(q) on W~q) by A (q)(zi,, zj) - (0, qsz1 + q2Z2), it is easiy
seon that A(q) is bounded. indeed, using the fact that the me, norm is stroune than
the HO norm, one finds IA (q)(zi, z2)1, Sc(qt, q2, q3)I(zi, Z2)Iq Whene the Constant C i
baroude ave unfoml on Ci HO) and (M4) hold, sayC(q 1,q2 ,q)a&.

.We thus Aind thatA(q)-A(q)+A(q) is the perturbation 6(tA, by a bounded
operator and hence [21, p. 495], [30, p. 801 generates a Co- smigroup T(t; q) on X(q)
seing

(4.6) j7r(t; q)t ~exp {c(qj, q2, q,)tI,

where there naist u >0 independent of q such that c(q1, q, qs) so) in case (HO) and
(H4) obtain (or in case (HQ) holds and q lies in a bounded subset of 0).

As we have pointed out earlier (afe the remarks in 1 2), AO(q) is a bounded
linear operator :or each N and heuc generates a Co-seiigroup on Xr(q). Assuming
that (HQ) holds and q li n a bounded subset of (0, we have that A (q) is the
infiniemal generator of a C.-uemigroup, satisying IT(t; q)I ae"w so that A(q) - wl
is the generator of a contraction senigroup and is hence disslpative [22, p. 90], [30,
pp. 14-17]. That is,

for all z e Dom (A (q)). From the definition of AN it follow that for z c. W(q)

(4.7) (Af(q~z ) (A~qPz ~) .Pz aIZI

sinceNqisteorhogonalpoectionot J(q) onto e(q). Hencewe find ITA(t; q)j a
c ,w as desired in the second conclusion of the theorem

We maun of Proposition 4.1 to establish thane o w results of the

theoremt We take for our discussions & -(#) and A, -J "which ofcourse

canonical Isomorphism from Xr(4) t(ql"), we w edtl from the hypothesis

We dorm - U diiS*'(4and have at emcthat 9c Doin(A(4)) and- 4
-~K(of). From the definition of A(,f), the fact that AI-A(,() k* Invertible for A

mudtently larg and that the 01h 4j are eigenfmanctions of A, it is eaily argued that 4

(AI -A(4))- 0 sothat(CA =A - (4); hence (i) is satisfed.4
SI
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Fina, S e the not nI N - ,N for the canonical isomorphism (see our
conmentsin 12), we have for each z e 9andN = N() sufficiently larse (then PNz =z)

i 4N(qN)z -A(4)zl _ P"A (q N)PNz -A(4)zj

=lpNA(qN)z -PNA(4)zI+P"A(4)z -A()zI
A 4A(q")z -A(4)zlI+ J(PN - )A(4)z I

where all norms are J'i,". Since qN -P4 by hypothesis, the form of A(q) yields that
the first term-.0 as N-eoo. From the completeness of the {Jp} in Wr(q*) (see our
remarks above), the equivalence of norms and thus the strong convergence pN _. I in
any of the norms, we obtain that the second term - 0. This completes the proof of
TMorem 4.1.

We return to the abstract nonlinear equation (4.3) to consider conditions on f of
(4.1) so that Fof (4.3) will satisfy (H6) and hence the reults of It 2 and 3 will be
appilcb.Define0s.-{q.eR'iqe Qwbere0cR' 3 isgiven for (4.1). Weimpose
the following hypotheses on f.
(6) The nonlinear functionf: 06X[0, Tlx[0, I]xR xR -x R satisfies:

(i) For each (q6bv,w)eQsxR, the map Qx)-.f(q6,tx,v,w) is
measurable.
(ii) For each constant M >0, there exists a function ki - kI(M) in L2(O, T)

such that for all (q6, f, x)E 06 x[0, T] x [0, 1] we have

If(q, 4 x V, w)-f(q6, t X, V2, w) j5kI(t)IvI - V21

for all (vI, w) 6R 2 with IviI M.
(ii) There exists a function f 2 in L2(0, T) such that |

tf(qe ., x, v, wi) -f(q., t, x, v, w2)1 A I2((t)w 1 - W21

for all (qG, t,x)c6x [0, Tlx[0, 1, and v, wI, W2 E R.
(iv) There exim function s in L(0, T) such that

i If~qING, t, X, %o)1 S C(X{V I + 11

for all (qo, , x, v) e 06 x [0, T]x [0, 1]xR t.

continuous.

Employing rather standard arguments and results from analysis (e.g., see [15,
Lem. 16(b), p. 196] in connection with (i)), it is quite straightforward to verify under
(H2) that (H6) for f implies (16) for F in the exmple under consideration. We an
therefore appeal to Proposition 2.1 to guaramsee existence of a unique mild solution
of (4.3) for any q a 0.

Summlidna, we have shown that under (H), (14) and (H6') the conditions
(H1)- ) hold for the abstract formulation (4.3) of (4.1)-IC)-(BC) when consider-
in the modal aprdmation schem

d ( v (9)\ = . t Hq) \ +"W

(4.8) ( y A ( r (,, t) )+p,(q. t VN(t), W(t)),

in W'(q). rh oe wspmc of Theorm 3.1 and 3.21is thus sssured and we may,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
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when an appropriate fit-to-dat function is ddnted, appeal to Theorem 2.1 to obtain
a solution of the associated Identification problem for (4.1NI(C1H-BC1 ). For example,
suppose wer ge ime observations f(,) e R1, i- 1, -- ~,r, for Wk Q I)O,** *,V. t4ZI))
in (4. 1) where 0 X t1< ... <tXT. Let u(f;q)-(uj(t,*;q), u2(t,*;q)) deote the
unique mild solution of (4.3) where we observe that u1Q; q)e Ho for ach 9,q, so dtha
pointwise evaluation In (0, 1] is a meaningfu operation. Let)J have the foam given
in (2.4) where now f(ti, q)incol (ul(t.x1 ; q). ,~ ,ul(ts, x,;q)) and C(tsq) is an Ilx
i-matrix depending continuously on q in 0 for each C. Then clearly this I satisfes

tecontinuity requirements of Theorem 2.1. Furthermore, it is easily seen that the
initial data in (4.3) depend continuously on q. For the moodal approximatioewrecall
that PN(q) is independent of q and finally note that the continuity of q -0 t .
follows directly from the form of A N(q), 0 N and KMN given explicitly in (2.10), (4.4)I and (4.5). T7he conclusions of our deliberations for Example 4.1 may thus be stated:

THmowRm 4.2. If (140), (H4) and (H6*) obtain, then the problent (nD)o, (4.8)
with I as defned above has, for each N, a solution 4 e 0c R 3 3. Letinqg {4 N,} be
any subsequence of { 4 N} converging to 4 eQ0, then 4 is a solution of the problem (MD)
for (4.3) and moreoovr w each t e 10, T),

l(vN(t; 4N~), 00k; 4 ')-(uiQ; 4), U2(t; 4))1-.0
us N, -* o where (oil u2 I thes nMo of (4.3) and the nom is as of 1 X H0 .

Renun* 4.1. We remark that the dependence of the nomon q in the above
treatment of hyperbolic system Is somewhat artificial. While one cannot effectively
resoale the du variab to remove the qj-depeadence in problems where sampling
times (observations) are Important, one can rescal. the state variables (ume w(t)
iliq-v, in place of the variable used in (4.3)) to avoid use of a weighted norm. We
chose not todo that in ouropuain for Exumpe 4.1. A preliminary consideration
leods one to conjecture that suob a reselling does not result in simplification from a
numerls viewpoint.

Ewnmple 4.2. Parabolic equaions L. For out second clas of examples we discuss
scalar pas abolAc eqnstions

(4.9) vs m5j (pvx), +q2v +f(q,. ,q?,t,x, v)

for t > 0, x e [0, 1] with initial and boundary conditions

OQ V(O, X) ~~~- T i 1z) ~;1

Heawe aasu that #1 HO, (t) (or v (t, x; q)) Is I& R, and q - (q1 , q2 , q, Q 4 E
Ano~ QcR3- 2 ad qr-(ql. -,q-) for 1-3,4, T.OPeraorsR 1, R2 definng

the bounary conditdon have douls H2 and are giviem for * 61Ma by

(4.10) RA* 'ai*(O)+a2*'(O)+j*()+ae,'(1).

where ap eR. We impose the folowing conditions an k andyp in (4.9) and the ap:

'4t., O(I1) The funetasp. p. and k arecoutinuous wth k()>0,p(x)>O for OSz 5 1.

ha ak2 adm wzs hav ()(sUam-12iaad mp()eqise.-a lan)I.
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We shall also assume that our parameter set 0 satisfies hypothesis (HO) already given
above.

To apply the results of If 2 and 3 we again rewrite our system as an abstract
evolution equation. Although we consider here only a scalar equation, the results we
present generalize immediately to coupled systems of parabolic equatio. Indeed,
we present numerical results in 16 for examples of such systems which are of interest
in biological applications (see [4D1 among others.

We define the general Sturm-Liouville operator A(q) (our operator here is the
negative of the one found in the literature cited below) in H ° by Dora (A(q))=

r*EH2IR j*m, _ I, 21 and A(q)* - k-(qp 1 ). +q2A. Then (4.9)-(IC)-(BC) can
be rewritten as

6(t) -A(q)v(t)+F(q, 4 v(t)), t>0,

where F(q,t,v(W))=f(q 4,t,'.,v(,.)) and the equation is taken in the state space
X(q)= '-(H°(.,.)) with (#,,)-g#6(x)#(x)k(x) dx. We note that, unlike in
Example 4.1, here the state space actually doesn't depend on q.

Spectral results for the operator A(q) are readily found in the literature--e.g.,
se [28, p. 182, [20, p. 126]. The hypodthss (HPI), (HP2) imply that A(q) is self-
adjoint and its spectrum consits of a countable number o real eiignvalues {A(q)})°.1,
each of multiplicity less than or equal to 2, and, moreover, thes eigenvalues can be
ordered so that -oo< ... Sj6/,; ... :SAI<0. The ;igntunction {',-
orr PndlgtoA(q*)wlerq*m(1,0,...,O)fonmaCONSin.

We further observe that the eievalues (AI(q)) of A(q) are bounded above
uniformly in q on bounded subsets of 0. Tis is easily seen a follows: Let X be the
eigenvalues of Ao-A(q*) (i.e., Ao# - k-(p 3 ).) with corresponding eigenfuvactons

, From our remarks above we bv I,4,j-1,2,., for some positive finite
constat J. Th eilgenvalues for A(q) are then found to be A(q)-ql1,+q2 (with
eilgnfunction Vj) so that we ind AI(q);S, on bounded subsets of 0, where is
independent of q (but depends, of course, on the particular bounded subset of 0
involved).

We define t appacwstlg modal subspaces of X(q) - * by *
open{9,. .. , ,ro) and let e: . denote the associated canonical orthol
projecdoos, As bdeom, ermine the operator A"(q) and F by A (q)
P" A()P ja -ae w e f olowin convergence results.

Tnoamm 4.3. Aqpfese A ( 10), (MIPi) wid (M12) he/d and qN, I e R
w~e owec ONee 4'-0- N..aD. Thee A(I) aned A"(qN) geesmus C.-,.mlWap
T(;)m)dTe(m. )un as.d 7 ;q 4")r-T(Y;)j-.O0 for z* WjA eth e -W.
pwm w~bvm in I an compac sake of J00). Pkv*uw, It (11) O~bia, thAm
udeaubiacimW&A Adqi ineof~usdqawwAsiT(c; q~jie~ud lT"(t; q)AS I5
ifJr t >0,qa4 dN- 1,2, . If

P .Lot be may bounded subst of Q. Than our remarks above imply
.duimed -. (O)s.th thn hel M.ft ospmiorA(),. q @0 he. b 1spectrum
b-f in On W, p.349) A(q)- is dissip atiLde., ((A(q)-
dfl,,szO Srall aDs(AWq) nmiqe. Pa Ad(M)we be". [28, P. 160]
ibm A(i)-AIf has coopaed rselveso so Som W particular we hae (A(q)-
A) Dom (A (4))- fo A 0 Wpreprly I t Ms imsedlately (30, p. 171 [2,
p. 1751 E2 p. 7] dmA(C) -AV b sml dblpmv ad gamnrs a Co-eroep
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of contractions on .Arguin as in (4.7), we have that AN(q)-,; is disipative,
uniommin q e a N = 1, 2,.. (it is maximal, being defined on all of *-see [22,
pi 861), andc hence is also the generator of a Co-10misonM f contractions.

The above remarks obviously apply if we choose 40 - N} U (q) where q? -* -4

or if i - Q where Q itself is compact, i.e., (14) holds. To obtain the converence
ressitsof the theorem, take d (q'{q)U(4 andumeProposition4.1.Here.1 9 -*
and conditions () and (il) of the propostion dearly are satisf ed. Let 0 =UN, r

so that 9 c Dom (A(4)) and 9 is dense in * From our remarks above, we have
A(4)*,-Aj(4)p. or A>maxA,(4) we have AI-A(4) invertible where (AI-
A(4))yt-(A -A,(q))*j, md it follows that (AI-A(4)) =9. Hence (iii) of Proposi-
tion 4.1 is satided. The arguments that (iv) is satisfied are exactly analogous to those
used to complete the proof of Theorem 4.1, here the completeness of the 1*1} yielding
PN -. strongly in * We thus have established the results of Theorem 4.3.

We turn finally to conditions on f in (4.9) that will insure that F of (4.11) satisfies
(M6). Let 0 4 -{q. e R'q e (} where Q is a given subset of R .

(H6**) The nonlinear function f: 0 4 x(0, T]x[0, 1]xR - R satisfies:
() For each (q4, v) e ( 4 x R, the map (t x) - f(q4, t, x, V) is measurable.
(ii) There exists a function £i in L(O, T) such that lf(q4, t, x, v )-
f(q4, 9, x, v2)I:kj(t)tvj-v 2I for all (q4, ,x, v,)e 4X[O, T]x[O, 1]xR.
(Mi) There exists a function k2 in L2([O, T] x C0, 1D such that If(q4, t, x, O)l I

E2(t, x) for all q4 e 0 4.
(iv) For each (t, x, ) in (0, T]x[0, 1]xR, the map q4-lf(q4, 4 x, v) is con-
tinuous on 04.

It is an ay exercise to verify that (H6**) for f implies (H6) for F (note that in
this enmle the condition (H2) is trivially satisfied). We thus may invoke Theorem
3.1 for convermno of our modal approximations defined in 'N by the equation

(4.() - AN(q )vN(t) +PNF(q, t, oN(t)),(4.12)W
VN(o)-,P N q3.

Plor thu&s pabolic sM ys defined in H. the question of an appropriate cost
fumonsd Is somswa mor delicate, since in gneral, point evaluation may not be

mmnloll. Ow possbility (a dl0s-at approach will be dscW below) is to choose
a ost function I asain (2.3) where now u - v is the mild solution of (4.11) and we
mi aisme, fw eam%, that (x. q) -, Y(t., x, q) is continuous for each ti. We are
spin In a position to employ Theorm 2.1 (takn into acount the comments in
Remark 2.2) to aebli the folowmng result for this ezample.

Tnomam 4A. use CHO). (114). OW') and WPI). (HP2) am ad4u. ThO
Ot~ GD" O ) fiw(4-12) wide Ja1(2.3) IMa.elmu 4N 4Qc X2 2 for sisch

N -1. 2, -. jy () kanm x&*enxwof V) couplISto_4aQ.0." 4 Isa
rilm d/ oD)to(4.11) m b s tat[, ) tw hanve given in-(;4)l-(0
N -*d, WhM , ', Vo e d/4 sokwu of (4.11), (4.12) re& ey und w ome

Bxaao 4.. im c equ"loa II. We conider again th pamralic equation
(4.9) wft ia condato (Ic) ,d bondary condan (9C but wi* sihl more:to mIddi I i 1 8 1 on , dw =, boudwy op-i tu= these, Shvs n (4.10)-(M).

We trt yrml with bounday opsirn dweese stm the standad Storm-

_ili

___

_.-fos _
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Liouviile operators (see [14, p. 145], [13, p. 291])

(A) R1 *-*(Q) or R2a*'*();

(() 4 .13).R*'(o) or Rr=#'(1);
(C) RIO'-*'(0)-oai*(O) or R 2 *-e'(l)+¢(), 'to2>0;

(D) R,,#,,(0)-#1) and R ,-p(O)*'(0)-p(1)"'(1).

In the mtluel, in referring to the standard Sturm-ouvifle boundary conditions
(SLIC), we shal mean any combination of choices for R, and R2 from (4.13) (AHC)
or the periodic boundary conditions rising from the choice of Ri, R2 given in (4.13)
(D).

Our main objective is to discuss te use of the simple poinowise fit-todata criteria

(4.14) E1 (q, v(' ; q), )i) Ij(t)-CO q)e(t q)l2
f-I

as defined in f 2 (ee (2.4) and the diacusions tberec). When treating (4.9) in * as
we did in Exan pie 4.2. it is by no means dear that the associated ID problem with
(4.14) I, weU posed. Indeed, one must first jusy the poiatwise evaluation (in the
spatial coordinate) of v involved in defiing f- assuming that this can be done, one
must entertain a second difficulty in that the converpnce (of Theorems 3.1 and 4.3)
of vN(t; q) to v(t;4) is in the * (i.e. H) norm. Siae I(, -,f) is iW continuous
on 0 x C(O, T; *), the reults of Theorem 2.1 me not directly applicable.

We turn first to the difficulty raised by point evaluations in (4.14). In this regard
we Mote that th mapping w -Jof(q, w. f ) frm C(0, T; *') to R, wbere Ji as given
in (4.14) and are the modal subepes defined in Ezample 4.2, is well defined for
each N- L 2,.., and, in partcuar, is well defined on solutin of (4.12). Hence
the approximating ptoblems ND) associated with J, are well posed in any event.
Justification of point evaluation for (ID) with .r, depends heavily on the smoothing
properties of (4.9) or, equivalntly, (4.11). Roughly speaking, for t >0 the solution
values v (r; q) wig be contained in Dom (A()) if only t -*(t) -F (q, t, v(t)) is smooth
enough [8, p. 192]. However, since we wish to avoid aditional smoothness hypotheses.
we choose a slightly more technical route to the same end.

Rcalling the argumeas for Theormn 4.3, we have tat A(q)-ou is seif-adjoint
and mmiml di sipaive where , cm be Phess1 independent of q aO. It therefore
folomw [9, p.47] )t -A(q) +,d - O'(q) &we & (q) demotsm ubdl
of trh futional *(q) s gienby

(4C1S) 410WO-0 I- ~d-A~)112uV If a Dora i-A(q))"2,
+4D otherwise.

Here (d-A(q)) dous the square root, which by stmndard remts [21, p. 281]
is known to Met. Under usm o (H1 *) for f, we have dht (H6) hoki for
P(q, 4 w)-f(qI, . w) Md In prtir(ee l)(i)) the mapping t -*F(, t. V(f; q))
.. b in tmL,T; N) Iort r-, (;4)t of( ).Thn(aee [9, 72]ndo etha
a weak utoi n tim sof (9] is in ti e unique i tlud so nin our me,
which , mura sv , aho a Strong solution) it foows that the mp t-*4*(qv(t;q))
Is is L(0, T;) .fd is T Caat m mU siervuls i [ T], 8 a>0 of
(0.?). (o la eI- (4.1s)thh s ;q)a(,I-,(q))" S a t>Oandwe

M lo a iat ota- I

Aq'Cie.? web tiseem e* nue me satud wuigms sing elementary
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results on interpolating spaces--ee [27, p. 9]. Briefly, by defining X (in the notation
of [27) as either H' with appropriate boundary conditions (in the event of B.C.'s
using combinations from (A) and (B) or B.C.(D) from (4.13)) or H' with an appropriate
energy norm (in the event elastic boundary conditions from (C) of (4.13) are involved)
and Y - *, one can make the identification A -( W-Aq)) 112 with Dora (A) = X.

We can therefore summarize by stating that conditions (HQ), (14), (H6**), (HPI)
in the case of (SLBC) are sucient to allow point evaluation in fl.

U we wish to relax the continuity hypothesis on J in Theorem 2. 1, it is necessary
to consider in more detail the fit-to-data criterion IN (q) - J(q, uN(. q), ;) of (IJN).
The following proposition will be useful in our deliberations; we state and prove it
using the notation of Thorm 2.1.

Paorosmo 4.2. We suppew ther exist 'wfi andJ N, N - 1,2, . , frm de

(i) foreh N - 1,2,. the map q-,.f $(q) is continuous on Q;
(i) fr any q e and any squence (NJ with N - oo, thew exists a submquenceNmPO set a t ' $mdW).$q );

(Ml) for any q"4, - dtem exiest a subsepqueiw {qN) such ta.N(q&)-.$(4)
T7%e for each N thee exists qN e0 tt mnimizes J#Nover Q and, moreover, for

any cnvere ssequence qA)of {IN} with q' - q, jf is a rbsinum over 0 at 4.j ~PW'EWf Let qN deom the amimixer (whose existence is guaranteed by (i) and%e Mopets Oj 0) f# 99 tha N (qN) Xj#N(q) for onl q e .Suppose qNk -.,q;

the by ill) (m xtng lor convenience in notation) we have J'(q")-.(4) for
some ub mquec e {q}. We ue this to argue that j(4);Sj(q) for qaQ. If
we asom tht tweem exist 4eQ and I such that j" (q')>j#(4) ft.i alf, then by (I)
there is yet A mur subsequence of ni, denoted by mk such that$mf(4) -$(4). Mence,
for sufdently kug i we h $',(qU,,) >$m,,(,) which contradicts the definition of
q' "a msinim sor ON.

To use fPrpston 4.2 with our particu l N =1 N defined using f, we must
consider specia cas for which hypotheses (i)-lii) of that proposton we readily
verified. We discuss the homogeneous (f'm0) version of (4.9) in * in this regard.

PaoposrnoN 4.3. Cbnwder (4.9) withf. a0, tal condom (IC) d boundary
conditi (SLIC) from (4.13). Am m ta (HQ), (14) and (H ) obfta. Then for
the solmdo= vN(.;q) of the appmzoltng eqato ((4.12) with FmO) we have
{vN(q)lq e O}* i areamelycompact subet of C(t*, T; C(O, 1;R)) for emc t*e(O, TJ.

Since the prood f this remmlists of decking compactness criteria for a specific
subset ot C(re, T; Y), where Y i a Banhch spae, we shll only sketch the ideas
involved, leaving the details to the interested and determtnd reader.

First recall that equation (4.12) is in *N -m {?i,... , Yf) where {1'.}%., is
the CONS of elgeafunctlus of A(q*) with corespodlig eilgemu i, - A(I) (see
the ismuion Imeditely premding Theorem 4.3). Solutions N of (4.12) have the
representation (see (2.S)-(2.12) and the ssociated discssosm) vm(t; ,) L' N w'(t)1VJ
wher wI,(t)-w7(o)ez{(1,ql+qa)t). To vur rtive ompn of the desire
set, ou can ue the Ascol theorem [25, p. 211] which requires equlcontinulty of the
set aong with relative compactness of{v (;qflqON-,2,...,}n C(O;R)
for each t in [t*, T] Use of the repreentation results along with standard stiumates
in Fourier analyss (seval, Cauchy-Schwam etc.) reduces th compacts criteria
to the task of vrifg

- ,.*

£ e F'coo

' '%'I
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which =~~e() 'Wh kSeb~a~p~~m()arm#aeiluso h

probpma q~m raos fith ~lpv~hs a Wkmou 113, IVL4.fl.

am fin) dffmO 69 (4.9)-OC)-
~V

oa so&" f M

IAu~~ ICt p ) (s, 40'saW6 -vq) "4)t
4l.p"a~. ]

J* ~ ~ mom A4~ a1 .eat h

~ oom~* ~ - 4J(ON-mWbm
ulamow Sean',"

W.6ms

I fb,>Ift 4W W L Am-lma." 4M
4~~A by-6u-



APPROXIMATION OF NONLINEAR PDES 837

it is easy to verify existence of an w independent of q e Q such that A(q)- I is
dissipative and symmetric in *, that Dorn (A (q)) is dense and R(A(q)-AI) = * for
some A, chosen sufficiently large and independent of q e Q. In particular, A(q) is
therefore self-adjoint [28, p. 971. The appoximating subspaces e are defined by

-span 41, -,,..., 4 N where 4 1(x)- -(21jr)sinJ,,x asin Example 4.1. We recall
that {4,}r is a CONS in . As before we let PN:* -*N denote the canonical
orthogonal projectiou and AN(q)=PA(q)PI, FN(q, t, v)-PNF(q, t, v) where
F: 0 x [0, T]x* x , is given by F(q, t, v) =f(q, t,., v). Formulation in * will require
additional assumptions on f, to be detailed in (H6***) below. We then have:

THEOREm 4.5. Suppose that (1Q) holds and let qN, qe be such that qN -0q
as N -*oo. Then A(41) and AN (qN) generate Co-semigroups T(t; 4) and TN(t;qN)on
*and JTN(t;qN)z-T(t; 4)zI*- 0 for each ze*, with the limit uniform in t on
compact subsets of [0, co). Furt.ermore, If 0 is compact, then there exists a constant wi
bidependentofNandq, such that IT(t;q)lIe' and (t; q) Ae'for t>O, q Q,
and N-1, 2,"..

The pod of this theorem is quite similar to that of Theorem 4.3 and will therefore
nm be given h .

We shell simply list conditions (compare with (H6**)) on f that will insure that
F ad (H6).
(H6") The nonlinear functionf: 0 4 x[O, T]x[0, 1]xR-- R satiies:

(0) For each v e *, the map x -of(q t, x, v(x)) is in *
() For each (q4 ,v)eQ.xR, the maps (tx)-*f(q4,.xv) (tx)-o
f. (q4. A, X. v), and (t. x) -f(q 4, t, x, v) are measum ble.1(Hi) There extists at function kE, in L2(0, T) iuch that 11f(q4, Ix, VAlSCO()
for all (q.,z, v)eQ04x[0, I]xR; foreachM>O there exists m'inL 2 (0,1)
sucthatf(q4, X, Vo-f(q4, tX, V2)I )liij(t)1v1-v21 and If,(q,, AX, V1)-
f.(qt,x.v)l IW'(t)lv,-v 21 for all (q4.,X)e4x[0,1 and V1, V2 with
IuIIAM, IV21M-.
(ii) There exists k2 in L2(0,T) such that If(q4,t,xO) k(t) and
If.(q,, 4X, v) S f4(t)( + lv} for all (q4., V) 6 0 4 x [0, 1] xR.
(iv) For each (t, x, v) in (0, T]x [0, 1] x R, the maps q4. f(q4 , t, x, v), q4-.
f2(q, t, x, v) and q4-sf.(q4, t, x, v) are ontinuous on 04.

The t-to-data crterion (4.14) together with the state equation in * are such
that the map (q, v)-J(q, v, f) ram 0 xC(O, T; *)-#R is continuous and, therefore,
Thee= 3.1 ad 2.1 aft readily appcb. We leave a precise statement of the
thmemfor (4.16)-IC)-(DBC) with (H6"'*), analogous to Thoorem 4.4. to the reader.

In candudig this discuslon, we remark that nmeri implementation of a
sdeme formulated as above In * (the projection in defnin the atPoxiMio n
(2.W)-2.12) ae now in the H inner product) is, of course, somewhat more tedious
from a teeiae vie o tan that for schemes such as thae in Example 4.3 where
the ste spies Is N.

Rxam$ 4.4. DI&In-contscdon equadeu. For the fnal eam;e of this se -
dm we ntm a ts. setting of wAqmple 4.2 and Indicue how, in (4.9), one might
Indnde convetion (or aiveol) term that ar indepedent of the Sturm-.ouville
m oPera (Pi,),. To illusate the ideas, we, for eo in exposiin only, take a simple

,. li r exeasl (nemllneritie of th type dbused previously presnt no essential
deOeM In i" oly dMusio and convection term Couider then

...... ....(4.17) O 1~ q V
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with initial conditions (IC) and the Dirichlet boundary conditions

(DBC) v(t,0)=v(t, 1)=0.

As state space we choose H ° with its usual inner product. We define the operator
A(q) with DoM (A(q))=H 2flHi by A(q)#=qj"+q 2,'. We then have A(q) is
dissipative since (again we assume (HQ) holds) for z e Dom (A(q)),

(A(q)z, z) = qt(z,, Z)+q2(z., z)

=-qllz.12+q 2 J (z 2/2). dx

= -q~tz~lI2l0.

Thus if we assume (H4), we find that A(q) is dissipative uniformly in q e Q.
In considering modal approximations, the question of existence of a complete

set of eigenfunctions for the operator A(q) arises naturally. Standard spectral results
for nonself-adjoint operators allow one to answer this question in the affirmative.
First, A(q) is a relatively bounded perturbation of a discrete spectral operator and is
itself a discrete spectral operator (see [15, Thin. XIX.4.16, p. 2347]-in this case the
boundary conditions (DBC) are easily seen to satisfy the necessary regularity
hypotheses-see [15, p. 2341-2344]). It follows that o(A(q)) consists of point spectrum
and that the e ,enprojections (E41 (see [15, p. 2292]) of the resolution of identity for
A(q) satisfy Y I E~ z -* z for z eNM (see [15, Cor. XVIII.2.33, p. 2257], along with
the properties of the projection operators--e.g., [15, Lem. XVIU.2.31, p. 2255]).
One can easily argue for our example that the generalized eigenmanifolds are one-
dimensional so that the eigenfunctions +(q) = exp (-q 2 X/2q,) sin jirx corresponding
to the eiPnvalues A(q) = -12 ir2ql -q2/2q, form a complete (but not orthogonal) set
inH ° .

We thus also have that A ep(A(q)) if A >0 so that (A(q)-1) Dom (A(q)) = H °

for A >0 and hence A(q) is maximal dissipative [22, p. 87], [30, p. 17]. The operator
A (q) generates a Co-semigroup T(t; q) satisfying IT(t; q)l A e ' for q e Q.

For a modal approximation scheme, it might be tempting at first thought to use
the finite-dimensional iibepaces IN(q) - san 1+1(q),. , m4(q)}, but of course this
would prove rather difficult oVsputationally in identification problems. Here we choose
to use the bib elements 42(x) - sin t siace we know (0,o}o forms a CONS in
l e and @,eDa (A(q)). We thm define HN -span( 1,.. , N} and remind the
reade that "mod" is sommddg of a miaomer for this scheme (actually, we took
a smiar -ppen Ai Empl 4.1 in chodS bab elements corresponding to
q-(I,O. •,0) Bod).

As mug we Mi ANJ) - PNA(q)P N where P ae the orthogonal projectors
P: -Vt.,(z. *,)OontH whc converge strongly to the identity on M.

1 d s@uh, 11m 11ma ma ,mlr to ths givi in Theorems 4.3 and
4.4, dw gmuaM ebtft rsm iida in ow -mSmI is to verify the stability and

b3n~e h~ Au am (IV) d Pipsln4.1 with if-A4 and dr'-_

mor delase. A mood dum (On es we boe med in pr vios examples) for de

1, 7- -m d td tibm caIs suls (II) 1 PFpmloimn 4.1. We chose insteadg-
4 .t ide u h mf
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A(4). Since (AI-A(4))+j(4)=(A-A 1)+1 (4) and the set {j'(4)} is complete, (iii)
is easily established and it only remains to show AN (qN)z -*A(4)z for z 6 .

We first note that from
AN(qN)z -A(4)zl I pN(A(qN)pNz -A(4)z)I + IPA(4)z -A(4)z I

and the strong convergence of pN to 1, it is sufficient to argue A(qN)PNz - A(4)z
for z e.9. It suffices to argue this latter convergence for z =+ - 4 k(4) fixed. For this
choice of z we find

NN
AN (qN)pN'#* = A(qN) E (*/ , 4Pj)4p = N (#, j.~ )P

N

ff,. 1' gj){qN(i r2 j + q I
j-1

N Nq 1 1:(O,. -i 2%'))(D + q 2., (O, ,j*)X,
| J-1

I (*t&, -ji4),j+q f

where x f(x) %2 cosjwrx and we have used the facts that x = -jlr4)j and 41f~~~~2 2 (~fiw

Integration by parts twice (using the fact that #k and 4 are in Ho') yiel4

(%,, 07) = (0 k", b)4

while a single integration by parts establishes (again use *k e Ho)

(k, -X;) x ( i, x,).
We thus have

N N

1.1 I-l

whom both j} and {Jx} constitute CONS in H °.Since ql-*q1 , q2N'b4 2 we thus
obtainAN(q )P"~ .q1*k +Is*& -A(4)*, as wadesie.

The theorem for theme approlmatlo ideas for the (ID) and (IDN) problems
with (4.17)-IC)-(DBC) are So smilar in statement to Theorems 4.3 and 4.4 that we
sall not prolons our discusio by givin a precis statement here.

With regrd to iylemntation ot tids schme, we point out that A(q) does not
ilve tsubspaH invafnd hc lbmm matri reprmntation pNAPN
(se (2.82.10)) is not a s pn matrib. However, for equations such as
(4.17), It is rather osily sn that (2.10) is given by

-q101#2  forI,

&4 N(q)]N 0 for 10 and +even,
.... ." hL-r ] orli a d,+lodd.

. ~ ~ ~ o I -s;dawnm in aftl 0OMApumOmL

• .... ; a wia.-ee -Z.Z• .ati o,
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S. A boundary mon problem. The theory developed in It 2 and 3 can also
be applied to optimal control problems governed by partial differential equations. We
shall demonstrate this by means of a specific example. Consider as a special case of
(4.1)-(IC)-(BCI) the problem

(5.1)

for t >0, x e [0, 1] with initial and boundary conditions

(IC3) 1(0,x)=4(x), CA,0x) = O(x),
(BC3) 6(t, 0) = s1(t). O(, 1) = s2(t),

where the boundary control functions s, are chosen in y = {s Is e H2(O, T; R),
s(0) = s'(0) = 0} and (4, *) e Hox H °. The transformation v(t, x)=
6(0, x)-(1 -x)s 1 0)-xs 2(t) applied to (5.1)-(IC3)-(BC) leads to

(5.2) V. = V, - (1- X)().-X (S2).,

(IC4) V (O X) = 0x), v,(O, X)--= (x),

(BC4) v Q, O) = v(t, 1) =0.
We let w --v, and reformulate (5.2)-(IC.4)-(BC4) as in Example 4.1 in the Hilbert
space =lxH ° with the usual inner product. This leads to a special case of (4.3)
given by

(5.3()' w(t) ( V(0) #

where

A=(O 0), v= y(x)=(Ox x0), o()-col((32),(s,)), (4, )eX.

The finite-dimensional subspaces, XN = . (q*), q*=(1,0,... ,0), are chosen as in
Example 4.1 and again we take AN - PNAPN, where PN: ' -. rN denote the canonical
orthogonal projections. For the convenience of the reader we repeat the family of
approximating equations gvn by

5N4t) -AN( t ")t(5.4) t--(t) Ww (t) wNTO)

In the light of Theorem 3.2 and 4.1 (with q -q, for af N), the l (ion (v(t; ),
wOO; a)) and (v(r; a), w(t; a)) of (S.4) and (5 .3), respecvely, - O H (v "0; a),w N(t; ar)) - (v (t; i€), w (t; dr)) in X ufformlyn t a k0, T], for any T >0 and unifoml
in a. a ir varies in bouded tuaft z o Lo(, r, x '). We doll Wbo need the folwn

LammA ..1. mI oposw P : Le r ,T; R2=) -* c (o rT; x)} Ao vi ( x t )=

o T(t - v)-w(v) Is L con t.

Dadingthemat (#Oe)Q) - eT(t - )w)"y(v) dr and using the convergence
of the Tu (t) to (t) gmneraed by A" and A..pedvly, it iely
seen that oopeatorn opolg. 1%e proof is completed once oneSarpees tht the ,mps F thenuelvee are comee

'.e .too ta an be applied to a varietaft~ma control prblem, onea ofwi lHbem oa9u lbeow. ar a muwcomplet
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discussion concernig approximation of optimal control problems for infinite-
dimenonal systeam by sequences of optimization problems for finfte-dimenional
system, we refer to [7] and the references given there.

We let L.j be any fixed dosed convex subset of L 2(0, T; R 2 ) (possibly L 2 itself)
and choose nonneptive continuous functions go:X-.R,gi: C(O,T;Wr)-.R and
g2 :L2(0, T; R2).R. The functions g, define the cost functional ): .W - R by

(5.5) 1(v) - go((v(T; 7), w(T; a)))+g,((v( ;( ), w(.; a))) + g2(0).

The optimal boundary value control problem associated with (5.1)-(IC3)-(BC3), (5.5)
is then taken to be:

( ) minimize J over Yd.
Suppose that a solution &=col (&,, &2)e Yd of (9) is found; this will uniquely

determine boundary controls It and 12 in . The approximate optimization problems
are defined by
(pN) minimize)n over Yd,

where
(5.6) () f (((; )w(T ))+,(( ';ow(;o))e(.

Notice that (5.6) is an optimization problem associated with an ordinary diferential
equation. We shall need two standard assumptions on the functions I,:

(01) The continuous functions g, are convex,
(02) gz(a)-'® a I-.
As a consequence of (01), the maps o-J$(a) and a-.I"(a) re convex, which
together with (02) implies the existence of solutions of () and (pN); these solutions
are in addition unique if one of the g, is strictly convex. Let cN denate a solution of
(V"). Then by (02) it folows that (0N) must be a bounded subset of L2(o, T; R2).
Indeed, the assumption iN'vi-.' o for some subsequence 4N,) contradicts the
inequalities ga(wN))"&(cN"(o N (u) d(a)<OO for all oeL(O, ";R1 ). The
convergence of )N"(o')-,,(o) is a consequence of (v"(;v), w"(; a))-
(v( ; ), w(t;a)) uniformly in t efo, T] and (01). Slnm , is conve: sand dosed it
is w"N closed so that there exis a weakly convergent subsequence (&N,) of (ON)
with 4a converging weakly to some 0eLm. By Theorem 3.2, Lemma 5.1 and the
estimates

K(N(; u ) Wt;Oq -(Pt; &). W(t; &))I

j (VN,,(t; ¢0eNk), WA1(t; o))(V; , w(t; CrNk))l

i ~ + t; GPM), WOt; dN'))- (v(t, if), WOt; &M),

it follows that
(VM"(t;' 'V.), WN.(t; W") - vt; &), WOt; )

n urnfomly in, t [0, T Sine convety and coatinuity together imply weak lower

ssmcotlulywe oba th e solowwn st of Inequal"e:
$ &)~ m i d (M(*'(T;. ̂N) wN,(T; .)

+ #0 %, N). L w +( )

in I
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for every (r e Y This implies that & is a solution of (W). Further standard arguments
can be used to show that strict convexity al) implies that iN itself converges weakly
to the unique solution & of (.) and that arm converges strongly in L2(O, T; R2) to 6
if I is strongly convex (see [7). We finally summarize some of the above discusion in

THEoREM 5.1. Suppose that (01) and (02) hold. If {") denotes a sequence of
solutions of (PN), then ther exists a susuee (rN , converting weakly to a solution
a of (.). Futermore, F"e(')-,)(6) and (,Nk(t;cNk),W (:;uN&)) -"

(v(t; ), w (t; a)) unifomly in t e [0, T]. Moreover, & determines uniquely boundary
contWols 11, 12 in ...

6. Nmnerksl esim In this section we briefly summarize our numerical
findings when applying the modal approximation algorithms to some of the
identification problems that were outlined in 1 4. The aim here is to demonstrate the
feasibility of the method for both hyperbolic and parabolic systems. As it turns out,
modal approximations appear to be very well suited for hyperbolic systems, while for
certain identification problems for parabolic systems we encountered some essential
difficulties which one should take into consideration before attempting any practical
use of the method for this type of equation. This will be explained further below. In
developing our software packages, no great attention was given to maximizing
efficiency in implementing the algorithms, or to minimizing computer time. The
ordinary differential equations (see (2.12)),that arise wee integrated by a simple
fourth-order Runeifitta method (with step size varying fron one example to the
next from .0125 to .05), and the coefficients of the nonlinearity ad the initial dataI i (see (2.9) and (2.11)) were computed by employing Simpson's rule. The minimization
problem arising in the identilcatiod problem for the approximating ordinary differen-

tia equations ws numerially solved by using an DM package (ZX Q) employing
the LvenbeS-Marquar algorithm. The "exact" outions, which were used for the
"data" In the fit-to-data criterion f, were generated by a Crank-Nicolson algorithm
wheever solutions in dosed form were not available. Them solutions were generated
with *ed known values of the parameers in the equations; thee values will be
referred to in the sequel a the "true" parameter vale".

In the examples below, a fit-to-data criterion of the type (2.4) with C(tbq),-1
was used thmughost. Further, we usualy (except in Example 6.5) let T = 2 and chose
t and x, equally spaced in [0,2] and [0,1], respectively, so that It-r,1=0.2 and
Ix,-x- 0.25.

Eample 6.1. Here we return to Example 4.1 and consider the linear one-
dimnional hyperbolic equation, which we repeat for convenience:

v qiv.,+qav,+qv for t>0,

v(O..v)-q5;(x) forOfixal,

v(, O) - V, 1)-0, fort>0,

where AX)- 2x fr. [0,J1a)nd J(x) - 2(1-x) for x [.s, 1 . Below, we present
n eJal rsou awior i man ,nerous rna with
this m e. W hesartup mq form Ipushe Iin dLvenberg-M qa" lgorithm
Sareo rdsd in the eo im of e e dw b., wm thu mtt-lst row contains
-the M1 pam ioU, Tablm s oudy t paamete on which a search
wm.... d ahm te remee puameatesf wer sumed known and tbretme
W e hiaao ftg d

KA
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In a first run (Table 1) we assumed that q3 =1I and q3 = 0 were known and we
were searching for q - (q1, q2, q4) with the true parameter values chosen to be 4=
(1.414, -I, 2) and with startup values qN'O= (1, 0, 1).

TAaLE I

4 1.A103 -0.9961 I.S9M
8 1.A126 -1.0021 2.0031

16 1.4129 -0.9 2.O005
32 1.4129 -0.999 2.0000

truevalue 1.414 - 1 2
Ma 1 0 1

A feature of interest for these models used with the LevenbeWgMarquardt
algorithm is the range of convergence for the parameter q. For this specific example,
we carrie out computations keeping two of the paramecters qj, q2. q4 in addition to
q3, qs fined while identifying one of qj, Sa . tws hevdta for q"' N. 0 , .0N.

taken in therags a14q0 S , -S Sq2 iO,.5Sq4NSS9,ruseclvyrpdcnver-
gence was still obtained. (The actual range of convergence may be much large; these
were merely the ranges of values we tested.)

In a second run (Table 2), q, - 1A14 and qs -1I wer evmued to be known and
the search was performed on q - (qz. q3. q4) wish true vlue 4-(-5,4,2) wi startup

TAuxf 2

N el41,

4 -4.993 4.0242 LOW99
8 -4.909 4.0672 2.0025

tM Ain -5 4 2
q me 0 0 1

V (,O0) 4. Q1) O Seru>O.
We hose doe true model jm ae4 (1A14, Z 1)6 whtm eo su vas
wa taemobe 40- (1, 1 t ert siume~d okeI we udortote 3.

SuORPke 6.3. Mae is smte Sadhei "won of as owm
f e~mqs.~+qs~t' huI)
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TeAKA 3

N 1, -C

4 1.4141 1.999 0.9735
3 1.4149 2.0013 0.9790

16 IA152 2.0009 0.9788
tMu VW"u 1.414 2 1

1 1 0

Although this noninearity does not satisfy (116*) of Example 4. 1, we report in
Table 4 on calculations carried out in the subepaces WN' of sr'. it is clea that the
algorithmn is converging in this case; indeed, one can relax the assumptions (H6*) so
a to prove convergence for such nonlinearities; see the discussion involving (A6)(i),
(ii) in 13.

T'ABLE 4

N 4N 4,

4 1.N35 0.6774 1.9999 1.2368
8 1.4107 0.9875 2.0001 0.8973

16 1.4136, 0.9963 2.0001 1.0016
&W re 1.414 1 2 1

q M 1 0 1 0

We turn now to some special. cases of the parabolic problem (4.9HIUCH-BC). As
pointed out earlier, parabolic equations can be more formidable than hyperbolic ones
to handle via modal approximations. The difficulties are more than just a simple lack
ofiedlblt hwvrti onet eie) hco ore can lead to

convince himself of this fact by taking Dirichiet boundary conditions and putting
p -k anI and /f- q2-. In our computational pursuita we did not make an effort to
use specific numerical methods for the stif system that can arise, but we simply
decreased the stepo siIn the Rusage-Kutta algoith to effect numerical stability. A
perhaps maore remxoe approach to avoiding these dificulties due to modal approxi-
nwmain is to take a ompletely diliret approximation scheme, say for example
spnea-based we.th.A. We hav paisued dd isa seessf sly for parabolic systems
and the detains of thos luvestlptlows wl be suerted elsewhere.

The Bk-to.dsta cuPeom is chnon to he (4.14) with CQt, q) -I in all the scalar
exmple below. I the tw-dh -- o sydevm of fezmple 6.7, we used the obvious
analogue of (4.14) for a ,oed system of equations.

Bxuu&pd 6.4. We Pnose the linear equation

of COME + 42V fort>O,

u(A X) i(i) ibrO~xI6l,

V(4 ).- f41) -O for,>O,
wbm j Is the " hW"IvuICII deimed is Duimpl 6.1. The modal approximation

9&n I~edtoMedh s d mlmei -lp, @ay&o It did identify each of
shm iM i* ts longg a t oie oae was &ud& Tis IS by no meam Surprising;
t M eesob"ile ol O teabov m h 6 a t eape resnaton vQ4x)-

1, 2. - m*
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no influence and at the following times t - .2, .4, -- the decay of the expementiu
term in addition to the decreasing magnitude of the coectients vj(O) cause successive
term to contribute less to the criterion J. Moreover, in tis example, v21(O) - 0 for
ji1, 2. , ,so that the criterion ussessentialy onyone mode to fit theamodelto
the data. The resuft from the search on both parameters simultaneously are presete
in Table 5.

TABLEu 5

N 07 4 2

4 0.0236 0.2313
a 0.0335 0.3239

16 0.0336 0.3296
true vaue 0.1 0.96

q40.25. 0.25

Keeping 12-.2 fixed and searchiing for q1, when the true parameter value is
= -. 1and q~l -0.25, we find 441-0.09999. Similarly, when q, - .1 is ketxdan

q2 is to he identified with 42-.986 and qm - .25, the algorithm yields 42- .986004.
Exmple 6.5. We next consider the nonlinear parabolic equation

Vt qIuz, -q4V2  for.'>0,
V (, X - 3; for0sx~1,

v(t,0) - V(t, 1) - 0 for f> 0.I It is well known that for q4 it0 the above system has a global solution and we are
therefore again in a situation where hypotheses (A6)(i), (Hl) of 13 must he used in
any theortia consideration of convergence. Our findings for this example are given
in Table 6. Here we choose T - 1, while keeping the increments between the "data"
points the sam as before (Au - .2 and Ax - .25).

TABLE 6

N 4IN4 47

2 SM03 4.8271 .3539
4 A4976 5.3001 1.2370
I AN$6 5.1774 1.1482

16 .5021 5.0345 1.0443

Example 6.6. We consider
V1-qV.,+2q(1+v)-1 fort>'O,

0.4-qs1 for OS S1,

In thiddwhe nxample we salvedo hopprolmdMin dtflcatlo problem both
lwitou ad with ae. Whe nomak was added th dwh Cra*k-Nlswko daua Which
w ad uWIn the 0tlw4Ma-0 we wer pert*-bed by Gaulsan make with zero

bin* a thu di s k* p m -, woP e U-tfmO umo

vsk&~ 1U sedown abid1 dBs r e re ide n TaOl 7.
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T, .t 7

N 444-'

ob S iaIf m 0s q2. 44 4 5.2275 1.9254
8 5.1374 1.9741

16 5.0668 1.945

noWe C3 - .01; ch om q,q4 4 5.2362 1.9335
a 5.1459 1.9813

16 5.0749 1.9917

no noie; seumcb an qj, qS. q4 4 0.2472 5.2846 2.5221
8 0.2301 5.1706 2.3534

16 0.2150 5.0623 2.1746

noie .o_.01; searhon q q. q4 4 0.2443 5.2903 2.4941
S . 0.2272 5.1760 2.3301

16 0.2120 5.0873 2.1442

ta valke 0.2 S 2
q 0.1 1 0

Exampe 6.7. As a final example we consider the coupled perabolic system

v, =qjv +2(1 +q 4w +v) - ',

w, , q~w. for t > O,

v(O, x) ;(x) for 0 Sx : 1,

w(O) -J(x) for O;x S1,
v(t,O)-v(t, 1)-w(t,O) w(t, 1) -0 fort>O,

for which the numerical results are Siven in Table 8.

TANS 8

N 411 2 4

no oe; eard on q. 44  4 .2011 1.9933
$ .1997 2.0226

nobe o'2,-.01; srt oa qj, q& 4 .A992 2.1105

8 .1960 2.1246

of oN; mvNch Om q2., 4 .0500 2.0514
8 .049 1.9551

NoWm -. 01; 0sch o q2. 4 .0522 2.0349
8 .0520 1.9385

so mob; "eu b m q, q , q4 4 .3011 .0300 1.9931
8 AI .04e 2,0187

oms tf., an I m t, q , 4 .197S .9522 2.1776
8 .1949 .0521 2.2066

eWM"W .2 .03 2

q ̂  .1 .1 0

4"i

q-.. ..
.. .. ' - .. •. ... -'..-.- .,,, .
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7. Ceadebf rsmuhs. Ile contifbus of the discussions in this paper are
twofold. First, we have developed a general approximation framework in the contextIof semigroups that allows treatment of identification and control problems; for a wide
class of distributed parameter systems. Our second contribution as a development,
using this framework, of "modal" approximation schemes in the spirit of those often
proposed in the engineering literature. In addition to providing a solid theoretical
foundation for such schemes, we have systematically tested them numerically on a
number of examples and reported some of our findings. One result of these investiga-
tions, has been our efforts to develop alternate schemes. The approximnation framework
can be used efficiently to develop a dlass of schemes based on spline or "finite-element"
ideas. A discussionm of our findings in this regard will appear in a manuscript that is
currently in preparation.

We cdose with several further remarks tWat we have added in the Bial version of
this paper, partly in response to referees' queries and partly as a result of our subsequent
efforts and findings in related Investigations. First, as we noted in Remark 4.1, the
generality of our theoretical framework (q dependent spaces norms, etc.) is not
essential to trea Exampl 4.1 or, indeed, amy of the specific examples discussed above.
Hoiwaver, if one cndesa parabolic system n in Example 4.2 for which the function
k is parameter dependent, the q dependence of the appropriate inner product is
essential. in fact, such problem. arise naturally in estimation question for porous
media problems, where one of the parameters to be estimated is the function k (the
field porosity) aitef. A treatment using the theoretical framework developed above
in connection with cubic spline approiations is Outlined for soch problem in [42].I With rearid to general spline approximation schemes, we have, since this paper
was fet wSkmn completed ertain efts on spline-ud techniques (referred to

,kdo I ftWo We would We to a~sp our sincere appreciatio to James
Cmowleywhe~ inadditio toeklap and anaging the softwere pachaeseittremely
well, was also helpful in various discus1,san the pract in s of t*e algrithm
employed In connection with the numerical result of f6

D13 A. V.mmiw 0A.KU. AbdRU A. ANIIU Auk u, *W Yak ofd wajh -
sw i-- to~ Ons kmpsbism if AMe plia AWLI M& Op. 5 (IMX9

(431R1?. bMNS 5blidf Old CmIOW IN Of MMMIII N I Lam. Moe Bssishuawes 6,
Sir. swV1k 19?,.

Asawsi Unbf bCS* -I I-r Im s. 3e 0 - Iis Lama s A pM
- 1~idn V6.19,Ams~Mabmasi Iiint, Puelis I&t, 361I-M.

B[A311? 2 3arnmVMmb waihAri6 4e0fai mesmZ-Ussd

~~4:

T...
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